Publications

AIM Biotech leads the way in scientific validation through peer-reviewed research.
Explore our list of 146 publications in key research and therapeutic areas!

Vascular Biology

Cancer

Immuno-Oncology

Neurobiology

Other Models

Reviews

Publications using our commercial products are marked with ‘​*‘.

2022 Publications

  1. Radiobiological effects of wound fluid on breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic culture. Shabnam Jeibouei, Ali Hojat, Ebrahim Mostafavi, Amir Reza Aref, Alireza Kalbasi, Vahid Niazi, Mohammad Ajoudanian, Farzaneh Mohammadi, Fariba Saadati, Seyed Mohammadreza Javadi, Forough Shams, Maryam Moghaddam, Farshid Karami, Kazem Sharifi, Farid Moradian, Mohammad Esmaeil Akbari and Hakimeh Zali. Nature May 2022 https://doi.org/10.1038/s41598-022-11023-z
  2. *Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system.Vaishaa Natarajan, Camille R. Simoneau, Ann L. Erickson, Nathan L. Meyers, Jody L. Baron, Stewart Cooper, Todd C. McDevitt and Melanie Ott. Open Biology January 2022 https://doi.org/10.1098/rsob.210320
  3. *A novel HER2-selective kinase inhibitor is effective in HER2 mutant and amplified non-small cell lung cancer. Jieun Son, Jaebong Jang, Tyler S. Beyett, Yoonji Eum, Heidi M. Haikala, Alyssa Verano, Mika Lin, John M. Hatcher, Nicholas P. Kwiatkowski, Pinar Ö. Eser, Michael J. Poitras, Stephen Wang, Man Xu, Prafulla C. Gokhale, Michael D. Cameron, Michael J. Eck, Nathanael S. Gray and Pasi A. Jänne. American Association for Cancer Research February 2022 https://doi.org/10.1158/0008-5472.CAN-21-2693
  4. *WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway  Ensong Guo, Rourou Xiao, Yifan Wu, Funian Lu, Chen Liu, Bin Yang, Xi Li, Yu Fu, Zizhuo Wang, Yuan Li, Yuhan Huang, Fuxia Li, Xue Wu, Lixin You, Tianyu Qin, Yiling Lu, Xiaoyuan Huang, Ding Ma, Gordon B. Mills, Chaoyang Sun and Gang Chen. JEM January 2022 https://doi.org/10.1084/jem.20210789

2021 Publications

  1. *Boosting Natural Killer Cell Therapies in Glioblastoma Multiforme Using Supramolecular Cationic Inhibitors of Heat Shock Protein 90. Tanmoy Saha, Amanda A van Vliet, Chunxiao Cui, Jorge Jimenez Macias, Arpita Kulkarni, Luu Nhat Pham, Sean Lawler, Jan Spanholtz, Anna-Maria Georgoudaki, Adil Doganay Duru and Aaron Goldman. Frontiers in Molecular Biosciences December 2021 DOI: 10.3389/fmolb.2021.754443
  2. *Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms.Haichuan Hu, Zofia Piotrowska1, Patricia J. Hare Huidong Chen, Hillary E. Mulvey, Aislinn Mayfield, Sundus Noeen, Krystina Kattermann, Max Greenberg, August Williams, Amanda K. Riley Jarad J. Wilson, Ying-Qing Mao Ruo-PanHuang, Mandeep K. Banwait, Jeffrey Ho Giovanna S. Crowther, Lida P.Hariri and Jeffrey A. Engelman. Cancer Cell November 2021 DOI: https://doi.org/10.1016/j.ccell.2021.09.003
  3. *Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries. Kristina Haase, Filippo Piatti, Minerva Marcanoa, Yoojin Shina, Roberta Visone, Alberto Redaelli, Marco Rasponi and Roger D. Kamm. Biomaterials November 2021 https://doi.org/10.1016/j.biomaterials.2021.121248
  4. *Antiangiogenic Nanomicelles for the Topical Delivery of Aflibercept to Treat Retinal Neovascular DiseaseLin, Jason Y. C. Lim, Zengping Liu, Bhav Harshad Parikh, Karishma N. Mehta, Joel Weijia Lai, Binxia Yang, Kim Chi Tran, Veluchamy Amutha Barathi, Kang Hao Cheong, Walter Hunziker, Xinyi Su and Xian Jun Loh. Advanced Materials November 2021 https://doi.org/10.1002/adma.202108360
  5. *Angiogenic Sprouting Dynamics Mediated by Endothelial-Fibroblast Interactions in Microfluidic Systems.Noosheen Walji, Sina Kheiri and Edmond W. K. Young. Advanced Biology November 2021 https://doi.org/10.1002/adma.202108360
  6. *Pirfenidone Reduces Epithelial–Mesenchymal Transition and Spheroid Formation in Breast Carcinoma through Targeting Cancer-Associated Fibroblasts (CAFs).Hamidreza Aboulkheyr Es, Thomas R Cox, Ehsan Sarafraz-Yazdi, Jean Paul Thiery and Majid Ebrahimi Warkiani. Cancers October 2021 https://doi.org/10.3390/cancers13205118
  7. *In vitro 3D liver tumor microenvironment models for immune cell therapy optimization. Maxine Lam, Jose Antonio Reales-Calderon, Jin Rong Ow, Giulia Adriani and Andrea Pavesi. APL Bioengineering October 2021 https://doi.org/10.1063/5.0057773
  8. *Localization of KRAS downstream target ARL4C to invasive pseudopods accelerates pancreatic cancer cell invasion. Akikazu Harada, Shinji Matsumoto, Yoshiaki Yasumizu, Kensaku Shojima, Toshiyuki Akama, Hidetoshi Eguchi and Akira Kikuchi. eLife September 2021 doi: 10.7554/eLife.66721
  9. *A 3D pancreatic tumor model to study T cell infiltration. Hilaria Mollica, Yi Juan Teo, Alrina Shin Min Tan, Damien Zhi Ming Tan, Paolo Decuzzi, Andrea Pavesi and Giulia Adriani. Biomaterials Science September 2021 DOI: 10.1039/D1BM00210D
  10. *Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells.Marc Vila Cuenca, Amy Cochrane, Francijna E. van den Hil, Antoine A. F.de Vries, Saskia A. J. Lesnik Oberstein, Christine L. Mummery and Valeria V. Orlova. Stem Cell Reports Semptember 2021 https://doi.org/10.1016/j.stemcr.2021.08.003
  11. *Rapid spheroid assays in a 3-dimensional cell culture chip.Jia Lin Teh, Siti Fairus Abdul Rahman, Gregory Domnic, Lengishwarra Satiyasilan, Nelson Jeng Yeou Chear, Darshan Singh and Nethia Mohana-Kumaran. BMC Research Notes August 2021 https://doi.org/10.1186/s13104-021-05727-0
  12. *5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment.Mostafa Yusefi, Michiele Soon Lee-Kiun, Kamyar Shameli, Sin-Yeang Teow, Roshafima Rasit Ali, Kit-Kim Siew, Hui-Yin Chan, Magdelyn Mei-Theng Wong, Wei-Ling Lim and Kamil Kuča. Carbohydrate Polymers August 2021 https://doi.org/10.1016/j.carbpol.2021.118523
  13. *A robust vasculogenic microfluidic model using human immortalized endothelial cells and Thy1 positive fibroblasts. Zhengpeng Wan, Shun Zhanga, Amy X. Zhong, Sarah E. Shelton, Marco Campisi, Shriram K. Sundararaman, Giovanni S. Offeddu, Eunkyung Ko, Lina Ibrahim, Mark F. Coughlin, Tiankun Liu, Jing Bai,, David A. Barbie and Roger D. Kamm. Biomaterials July 2021 https://doi.org/10.1016/j.biomaterials.2021.121032
  14. *Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment.Terry Ching, Yi-Chin Toh, Michinao Hashimoto and Yu Shrike Zhang. Trends in Pharmacological Sciences June 2021 https://doi.org/10.1016/j.tips.2021.05.007
  15. *Engineering Breast Cancer On-chip—Moving Toward Subtype Specific Models.Carmen Moccia and Kristina Haase. Frontiers in Bioengineering and Biotechnology June 2021 doi: 10.3389/fbioe.2021.694218
  16. *Microphysiological systems to study tumor-stroma interactions in brain cancer. Edward R. Neves, Brendan A. C. Harley and Sara Pedron. Brain Research Bulletin June 2021 https://doi.org/10.1016/j.brainresbull.2021.06.012
  17. *Human MAIT cells endowed with HBV specificity are cytotoxic and migrate towards HBV-HCC while retaining antimicrobial functions.Katie Healy, Andrea Pavesi, Tiphaine Parrot, Michał J. Sobkowiak, Susanne E. Reinsbach, Haleh Davanian, Anthony T. Tan, Soo Aleman, Johan K. Sandberg, Haleh Davanian, Antonio Bertoletti, and Margaret Sällberg Chen. JHEP Reports June 2021 https://doi.org/10.1016/j.jhepr.2021.100318
  18. *Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. I. M. Oliveira, M. R. Carvalho, D. C. Fernandes, C. M. Abreu, F. R. Maia, H. Pereira, D. Caballero, S. C. Kundu, R. L. Reisab and J. M. Oliveira. Journal of Materials Chemistry B May 2021 https://doi.org/10.1039/D1TB00802A 
  19. *Post-transcriptional repression of circadian component CLOCK regulates cancer-stemness in murine breast cancer cells. Takashi Ogino, Naoya Matsunaga, Takahiro Tanaka, Tomohito Tanihara, Hideki Terajima, Hikari Yoshitane, Yoshitaka Fukada, Akito Tsuruta, Satoru Koyanagi and Shigehiro Ohdo. eLife April 2021 DOI: 10.7554/eLife.66155
  20. *Apoptosis mapping in space and time of 3D tumor ecosystems reveals transmissibility of cytotoxic cancer death.Irina Veith, Arianna Mencattini, Valentin Picant, Marco Serra, Marine Leclerc, Maria Colomba Comes, Fathia Mami-Chouaib, Jacques Camonis, Stéphanie Descroix, Hamasseh Shirvani, Fatima Mechta-Grigoriou, Gérard Zalcman, Maria Carla Parrini and Eugenio Martinelli. Plos Computational Biology March 2021 https://doi.org/10.1371/journal.pcbi.1008870
  21. *IL-15 mediated expansion of rare durable memory T cells following adoptive cellular therapy.Karan Kohli, Theodore Scott Nowicki, Shihong Zhang1, Ralph Graeme Black, Brett A Schroeder, Erik A Farrar, Jianhong Cao, Heather Sloan, Dawn Stief, Lee D Cranmer, Michael J Wagner, Douglas S Hawkins, Venu G Pillarisetty, Antoni Ribas, Jean Campbell, Robert H Pierce, Edward Y Kim, Robin L Jones, Stanley R Riddell, Cassian Yee and Seth M Pollack. Journal for Immunotherapy of Cancer March 2021 DOI: 10.1136/jitc-2020-002232
  22. *Intrinsic Immunogenicity of Small Cell Lung Carcinoma Revealed by Its Cellular Plasticity.Navin R. Mahadevan, Erik H. Knelson, Jacquelyn O. Wolff, Amir Vajdi, Maria Saigí, Marco Campisi, Deli Hong, Tran C. Thai, Brandon Piel, Saemi Han, Bruce B. Reinhold, Jonathan S. Duke-Cohan, Michael J. Poitras, Luke J. Taus, Patrick H. Lizotte, Andrew Portell, Victor Quadros, Alison D. Santucci, Takahiko Murayama, Israel Cañadas, Shunsuke Kitajima, Aoi Akitsu, Maya Fridrikh, Hideo Watanabe, Brendan Reardon, Prafulla C. Gokhale, Cloud P. Paweletz, Mark M. Awad, Eliezer M. Van Allen, Ana Lako, Xi-Tao Wang, Benjamin Chen, Fangxin Hong, Lynette M. Sholl, Michael Y. Tolstorukov, Kathleen Pfaff, Pasi A. Jänne, Evisa Gjini, Robin Edwards, Scott Rodig, Ellis L. Reinherz, Matthew G. Oser and David A. Barbie. Cancer Discovery March 2021 DOI: 10.1158/2159-8290.CD-20-0913
  23. *The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination. Giovanni S. Offeddu, Cynthia Hajal, Colleen R. Foley, Zhengpeng Wan, Lina Ibrahim, Mark F. Coughlin and Roger D. Kamm. Communications Biology February 2021 https://doi.org/10.1038/s42003-021-01774-2
  24. *Microheart: A microfluidic pump for functional vascular culture in microphysiological systems.Giovanni S.Offeddu, Jean Carlos Serrano, Sophia W. Chen, Sarah E. Shelton, Yoojin Shin, Marie Floryan and Roger D.Kamm. Journal of Biomechanics February 2021 https://doi.org/10.1016/j.jbiomech.2021.110330
  25. Advances in microfluidic in vitro systems for neurological disease modeling. Paul M. Holloway, Sandrine Willaime-Morawek, Richard Siow, Melissa Barber, Róisín M. Owens, Anup D. Sharma, Wendy Rowan, Eric Hill and Michele Zagnoni. Journal of Neuroscience Research February 2021 https://doi.org/10.1002/jnr.24794
  26. *Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer.Woo-Cheo Cho, Minjung Kim, Ji Won Park, Seung-Yong Jeong and Ja-Lok Ku. Translational Oncology February 2021 https://doi.org/10.1016/j.tranon.2020.101000
  27. *Engineering approaches for studying immune-tumor cell interactions and immunotherapy. Sarah E. Shelton, Huu Tuan Nguyen, David A. Barbie and Roger D.Kamm. iScience January 2021 https://doi.org/10.1016/j.isci.2020.101985
  28. *Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Shun Zhang , Zhengpeng Wan and Roger D. Kamm. Lab Chip January 2021 DOI: 10.1039/D0LC01186J
  29. *Generation of Functional Vascular Endothelial Cells and Pericytes from Keratinocyte Derived Human Induced Pluripotent Stem Cells. Selin Pars, Kevin Achberger, Alexander Kleger, Stefan Liebau and Natalia Pashkovskaia. Cells January 2021 https://doi.org/10.3390/cells10010074
  30. *The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform. Cynthia Hajal, Lina Ibrahim, Jean Carlos Serrano, Giovanni S. Offeddu and Roger D.Kamm. Biomaterials January 2021 https://doi.org/10.1016/j.biomaterials.2020.120470
Key Publications

  1. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014
  2. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, … Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
  3. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proceedings of the National Academy of Sciences, pp. 201417115, 2014
  4. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID: 24550267
  5. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD. Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID: 23172153
  6. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID: 22869695
  7. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr Biol (Camb). 2012 Jun 7. PMID 22722695
  8. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S. Nature Prot, 7(7):1247-1259, 2012, PMID: 22678430
  9. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
  10. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD. Lab Chip, 2008, 8, 1468-1477.

1.1. Angiogenesis

  1. *Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models. Park JH, Kim MJ, Kim WJ, Kwon KD, Ha KT, Choi BT, Lee SY and Shin HK. Cancer Letters (Mar 2020) DOI:10.1016/j.canlet.2020.03.009
  2. *Crumbs proteins regulate layered retinal vascular development required for vision. Son S, Cho M and Lee J. Biochemical and Biophysical Research Communications, Volume 521, Issue 4, 22 January 2020, Pages 939-946.
  3. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M. Integr. Biol., 2013. 5 (12):1474-1484​
  4. In vitro angiogenesis assay for the study of cell-encapsulation therapy. Kim C, Chung S, Yuchun L, Kim M-C, Chan JKY, Asada HH, Kamm RD. Lab Chip, 2012. 12 (16):2942-2950
  5. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, . . . Chung S. Nature Protocols, 2012. 7 (7):1247-1259
  6. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD. PLoS ONE, 2012. 7 (12):e50582
  7. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, . . . Asada HH. PLoS ONE, 2012. 7 (5):e37333
  8. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, . . . Chung S. Lab Chip, 2011. 11 (13):2175-2181
  9. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S. Analytical Chemistry, 2011. 83 (22):8454-8459
  10. Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies. Das A, Lauffenburger D, Asada H, Kamm R. Cellular and Molecular Bioengineering, 2010. 3 (4):345-360
  11. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD. FASEB J., 2009. 23 (7):2155-2164
  12. Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform. Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Advanced Materials, 2009. 21 (47):4863-4867
  13. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm R. Lab Chip, 2008. 8 (9):1468-1477

1.2. Anti-Angiogenesis

  1. *Angiogenic Sprouting Dynamics Mediated by Endothelial-Fibroblast Interactions in Microfluidic Systems.Noosheen Walji, Sina Kheiri and Edmond W. K. Young. Advanced Biology November 2021 https://doi.org/10.1002/adma.202108360
  2. *Antiangiogenic Nanomicelles for the Topical Delivery of Aflibercept to Treat Retinal Neovascular DiseaseLin, Jason Y. C. Lim, Zengping Liu, Bhav Harshad Parikh, Karishma N. Mehta, Joel Weijia Lai, Binxia Yang, Kim Chi Tran, Veluchamy Amutha Barathi, Kang Hao Cheong, Walter Hunziker, Xinyi Su and Xian Jun Loh. Advanced Materials November 2021 https://doi.org/10.1002/adma.202108360
  3. *Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Mercurio A, Sharples L, Corbo F, Franchini C, Vacca A, Catalano A, Carocci A, Kamm RD, Pavesi A and Adriani G (2019) Front. Pharmacol. 10:349. doi: 10.3389/fphar.2019.00349​​
  4. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. Lab Chip, 2015. 15 (1):301-310
  5. Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sharghi-Namini S, Tan E, Ong L-LS, Ge R, Asada HH. Sci. Rep., 2014. 4:4031
  6. The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device. Yamamoto K, Tanimura K, Mabuchi Y, Matsuzaki Y, Chung S, Kamm RD, . . . Sudo R. J. Biomech. Sci. Eng., 2013. 8 (2):114-128

1.3. Vasculogenesis

  1. *The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform. Cynthia Hajal, Lina Ibrahim, Jean Carlos Serrano, Giovanni S. Offeddu and Roger D.Kamm. Biomaterials January 2021 https://doi.org/10.1016/j.biomaterials.2020.120470
  2. *Generation of Functional Vascular Endothelial Cells and Pericytes from Keratinocyte Derived Human Induced Pluripotent Stem Cells. Selin Pars, Kevin Achberger, Alexander Kleger, Stefan Liebau and Natalia Pashkovskaia. Cells January 2021 https://doi.org/10.3390/cells10010074
  3. *Microheart: A microfluidic pump for functional vascular culture in microphysiological systems.Giovanni S.Offeddu, Jean Carlos Serrano, Sophia W. Chen, Sarah E. Shelton, Yoojin Shin, Marie Floryan and Roger D.Kamm. Journal of Biomechanics February 2021 https://doi.org/10.1016/j.jbiomech.2021.110330
  4. *A robust vasculogenic microfluidic model using human immortalized endothelial cells and Thy1 positive fibroblasts. Zhengpeng Wan, Shun Zhanga, Amy X. Zhong, Sarah E. Shelton, Marco Campisi, Shriram K. Sundararaman, Giovanni S. Offeddu, Eunkyung Ko, Lina Ibrahim, Mark F. Coughlin, Tiankun Liu, Jing Bai,, David A. Barbie and Roger D. Kamm. Biomaterials July 2021 https://doi.org/10.1016/j.biomaterials.2021.121032
  5. *Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells.Marc Vila Cuenca, Amy Cochrane, Francijna E. van den Hil, Antoine A. F.de Vries, Saskia A. J. Lesnik Oberstein, Christine L. Mummery and Valeria V. Orlova. Stem Cell Reports Semptember 2021 https://doi.org/10.1016/j.stemcr.2021.08.003
  6. *Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries. Kristina Haase, Filippo Piatti, Minerva Marcanoa, Yoojin Shina, Roberta Visone, Alberto Redaelli, Marco Rasponi and Roger D. Kamm. Biomaterials November 2021 https://doi.org/10.1016/j.biomaterials.2021.121248
  7. *Microvessel network formation and interactions with pancreatic islets in 3D chip cultures​. Rambøl MH, Han E, and Niklason LE. Tissue Engineering Part A (Jan 2020) https://doi.org/10.1089/ten.tea.2019.0186
  8. *Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Xiao Y, Kim D, Dura B, Zhang K, Han E, Ip J, Chen AT, Zhou J and Fan R. Adv. Sci. 2019, 6, 1801531. DOI: 10.1002/advs.201801531
  9. *Senescent Cells with Augmented Cytokine Production for Microvascular Bioengineering and Tissue Repairs. Xiao Y, Liu C, & Chen Z, Blatchley MR, Kim DJ, Zhou J, Xu M, Gerecht S and Fan, R. (2019). Advanced Biosystems. 1900089. doi: 10.1002/adbi.201900089.​
  10. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
  11. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fröse J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.
  12. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Cancer Res., 2016. 76 (9):2513-2524
  13. Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, . . . Murphy WL. Stem Cell Reviews and Reports, 2015. 11 (3):511-525
  14. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, . . . Kamm RD. Integr. Biol., 2014. 6 (5):555-563
  15. In Vitro Microvessel Growth and Remodeling within a Three-Dimensional Microfluidic Environment. Park Y, Tu T-Y, Lim S, Clement IM, Yang S, Kamm R. Cellular and Molecular Bioengineering, 2014. 7 (1):15-25
  16. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Engineering Part C: Methods, 2014. 20 (7):543-552

1.4. Flow Response

  1. *Physiologic flow-conditioning limits vascular dysfunction in engineered human capillaries. Kristina Haase, Filippo Piatti, Minerva Marcanoa, Yoojin Shina, Roberta Visone, Alberto Redaelli, Marco Rasponi and Roger D. Kamm. Biomaterials November 2021 https://doi.org/10.1016/j.biomaterials.2021.121248
  2. Mechanism of a flow-gated angiogenesis switch: Early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD. Integr. Biol., 2012. 4 (8):863-874

1.5. Transendothelial Migration

  1. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, . . . Chung S. Lab Chip, 2012. 12 (20):3861-3865

1.6. Migration

  1. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network. Kim M-C, Whisler J, Silberberg YR, Kamm RD, Asada HH. PLoS Comput Biol, 2015. 11 (10):e1004535​
  2. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context. Hang T-C, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, . . . Lauffenburger DA. Molecular & Cellular Proteomics : MCP, 2013. 12 (12):3704-3718

1.7. Permeability

  1. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong HE, Jeon JS, Kamm RD, Huh D, . . . Chung S. Sci. Rep., 2015. 5:18290

2.1. Spheroid Dispersion

  1. *Rapid spheroid assays in a 3-dimensional cell culture chip.Jia Lin Teh, Siti Fairus Abdul Rahman, Gregory Domnic, Lengishwarra Satiyasilan, Nelson Jeng Yeou Chear, Darshan Singh and Nethia Mohana-Kumaran. BMC Research Notes August 2021 https://doi.org/10.1186/s13104-021-05727-0
  2. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2017 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.​​
  3. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang T-M, Tu T-Y, Penny H-XL, Wong S-C, . . . Thiery J-P. Oncotarget, 2015. 6 (28):25295-25307
  4. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Bai J, Tu T-Y, Kim C, Thiery JP, Kamm RD. Oncotarget, 2015. 6 (34):36603-36614
  5. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, . . . Gray NS. Proc. Natl. Acad. Sci. USA, 2014. 111 (45):E4869-E4877
  6. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, . . . Gillanders WE. The Journal of Clinical Investigation, 2014. 124 (12):5411-5423
  7. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, . . . Barbie DA. Cancer Discov., 2014. 4 (4):452-465
  8. Validating Antimetastatic Effects of Natural Products in an Engineered Microfluidic Platform Mimicking Tumor Microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C. Mol. Pharm., 2014. 11 (7):2022-2029
  9. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, . . . Kamm RD. Integr. Biol., 2013. 5 (2):381-389

2.2. Extravasation

  1. *The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination. Giovanni S. Offeddu, Cynthia Hajal, Colleen R. Foley, Zhengpeng Wan, Lina Ibrahim, Mark F. Coughlin and Roger D. Kamm. Communications Biology February 2021 https://doi.org/10.1038/s42003-021-01774-2
  2. *Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model. Azadi S, Shadpour MT and Warkiani ME. Biotechnol Bioeng (October 2020) https://doi.org/10.1002/bit.27612
  3. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fröse J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.​
  4. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, . . . Wong SC. OncoImmunology, 2016. 5 (8):e1191731
  5. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, . . . Weinberg RA. Cancer Discov., 2016. 6 (6):630-649
  6. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proc. Natl. Acad. Sci. USA, 2015. 112 (1):214-219
  7. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, . . . Kamm RD. Biomaterials, 2014. 35 (8):2454-2461
  8. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr. Biol., 2013. 5 (10):1262-1271
  9. In Vitro Model of Tumor Cell Extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS ONE, 2013. 8 (2):e56910

2.3. Intravasation

  1. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc. Natl. Acad. Sci. USA, 2012. 109 (34):13515-13520

2.4. Flow Response

  1. *The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform. Cynthia Hajal, Lina Ibrahim, Jean Carlos Serrano, Giovanni S. Offeddu and Roger D.Kamm. Biomaterials January 2021 https://doi.org/10.1016/j.biomaterials.2020.120470
  2. Mechanotransduction of fluid stresses governs 3D cell migration. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc. Natl. Acad. Sci. USA, 2014. 111 (7):2447-2452
  3. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc. Natl. Acad. Sci. USA, 2011. 108 (27):11115-20

2.5. Invasion and Migration

  1. Radiobiological effects of wound fluid on breast cancer cell lines and human-derived tumor spheroids in 2D and microfluidic culture. Shabnam Jeibouei, Ali Hojat, Ebrahim Mostafavi, Amir Reza Aref, Alireza Kalbasi, Vahid Niazi, Mohammad Ajoudanian, Farzaneh Mohammadi, Fariba Saadati, Seyed Mohammadreza Javadi, Forough Shams, Maryam Moghaddam, Farshid Karami, Kazem Sharifi, Farid Moradian, Mohammad Esmaeil Akbari and Hakimeh Zali. Nature May 2022 https://doi.org/10.1038/s41598-022-11023-z
  2. *Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer.Woo-Cheo Cho, Minjung Kim, Ji Won Park, Seung-Yong Jeong and Ja-Lok Ku. Translational Oncology February 2021 https://doi.org/10.1016/j.tranon.2020.101000
  3. *Post-transcriptional repression of circadian component CLOCK regulates cancer-stemness in murine breast cancer cells. Takashi Ogino, Naoya Matsunaga, Takahiro Tanaka, Tomohito Tanihara, Hideki Terajima, Hikari Yoshitane, Yoshitaka Fukada, Akito Tsuruta, Satoru Koyanagi and Shigehiro Ohdo. eLife April 2021 DOI: 10.7554/eLife.66155
  4. *5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment.Mostafa Yusefi, Michiele Soon Lee-Kiun, Kamyar Shameli, Sin-Yeang Teow, Roshafima Rasit Ali, Kit-Kim Siew, Hui-Yin Chan, Magdelyn Mei-Theng Wong, Wei-Ling Lim and Kamil Kuča. Carbohydrate Polymers August 2021 https://doi.org/10.1016/j.carbpol.2021.118523
  5. *A 3D pancreatic tumor model to study T cell infiltration. Hilaria Mollica, Yi Juan Teo, Alrina Shin Min Tan, Damien Zhi Ming Tan, Paolo Decuzzi, Andrea Pavesi and Giulia Adriani. Biomaterials Science September 2021 DOI: 10.1039/D1BM00210D
  6. *Localization of KRAS downstream target ARL4C to invasive pseudopods accelerates pancreatic cancer cell invasion. Akikazu Harada, Shinji Matsumoto, Yoshiaki Yasumizu, Kensaku Shojima, Toshiyuki Akama, Hidetoshi Eguchi and Akira Kikuchi. eLife September 2021 doi: 10.7554/eLife.66721
  7. *Pirfenidone Reduces Epithelial–Mesenchymal Transition and Spheroid Formation in Breast Carcinoma through Targeting Cancer-Associated Fibroblasts (CAFs).Hamidreza Aboulkheyr Es, Thomas R Cox, Ehsan Sarafraz-Yazdi, Jean Paul Thiery and Majid Ebrahimi Warkiani. Cancers October 2021 https://doi.org/10.3390/cancers13205118
  8. *Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer. Cho WC, Kim MJ, Park JW, Jeong SY, and Ku JL. Translational Oncology Volume 14, Issue 2, February 2021, 101000. https://doi.org/10.1016/j.tranon.2020.101000
  9. *Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma Therapy. Gu MJ, Toh TB, Hooi L, Lim JJ, Zhang XY, and Chow EKH. ACS Appl. Mater. Interfaces 2019, 11, 49, 45427-45441
  10. *Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Xiao Y, Kim D, Dura B, Zhang K, Han E, Ip J, Chen AT, Zhou J and Fan R. Adv. Sci. 2019, 6, 1801531. DOI: 10.1002/advs.201801531
  11. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H… Guccione E. Life Science Alliance, 7 Sept 2018 doi:10.26508/lsa.201800157​​
  12. Macrophage-secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Li R, Hebert JD, Lee TA, Xing H, Boussommier-Calleja A, Hynes RO, . . . Kamm RD. Cancer Res., 2016. 77 (2):279-290
  13. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M. Sci. Rep., 2016. 6:34094
  14. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, . . . Sudo R. Microfluid. Nanofluid., 2013. 14 (6):969-981
  15. Hydrogels: Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Jeong HE, Lee E-S, . . . Chung S. Advanced Healthcare Materials, 2013. 2 (6):920-920
  16. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD. Lab Chip, 2012. 12 (22):4855-4863
  17. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis I, Chung S, Sudo R, Zhang M, Charest J, Kamm R. International Journal of Micro-Nano Scale Transport, 2010. 1 (1):27-36
  18. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Lab Chip, 2009. 9 (2):269-275

2.6. Testing New Therapeutic Approaches

  1. A novel HER2-selective kinase inhibitor is effective in HER2 mutant and amplified non-small cell lung cancer. Jieun Son, Jaebong Jang, Tyler S. Beyett, Yoonji Eum, Heidi M. Haikala, Alyssa Verano, Mika Lin, John M. Hatcher, Nicholas P. Kwiatkowski, Pinar Ö. Eser, Michael J. Poitras, Stephen Wang, Man Xu, Prafulla C. Gokhale, Michael D. Cameron, Michael J. Eck, Nathanael S. Gray and Pasi A. Jänne. American Association for Cancer Research February 2022 https://doi.org/10.1158/0008-5472.CAN-21-2693
  2. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip.
    Natalia Feiner-Gracia, Adrianna Glinkowska Mares, Marina Buzhor, Romen Rodriguez-Trujillo, Josep Samitier Marti, Roey J. Amir*, Silvia Pujals, and Lorenzo Albertazzi. ACS Applied Bio Materials December 2020 https://doi.org/10.1021/acsabm.0c01209
  3. *Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models. Park JH, Kim MJ, Kim WJ, Kwon KD, Ha KT, Choi BT, Lee SY and Shin HK. Cancer Letters (Mar 2020) DOI:10.1016/j.canlet.2020.03.009
  4. *Use of ex vivo patient derived tumor organotypic spheroids to identify combination therapies for HER2mutant non small cell lung cancer. Ivanova E, Kuraguchi M, Xu M, Portell A, Taus LJ, Diala I… Janne PA (2020) Clin Cancer Res. 2020 Feb 7. pii: clincanres.1844.2019. doi: 10.1158/1078-0432.CCR-19-1844.
  5. *Quantitative screening of the effects of hyper-osmotic stress on cancer cells cultured in 2- or 3-dimensional settings. Miermont A, Lee SWL, Adriani G, Kamm RD Scientific Reports volume 9, Article number: 13782 (2019)
  6. *Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Mercurio A, Sharples L, Corbo F, Franchini C, Vacca A, Catalano A, Carocci A, Kamm RD, Pavesi A and Adriani G (2019) Front. Pharmacol. 10:349. doi: 10.3389/fphar.2019.00349​​
  7. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C … Wong KK. Clinical Cancer Research 26 June 2018 doi: 10.1158/1078-0432.CCR-17-3438
  8. Engineering a 3D microfluidic culture platform for tumor-treating field application. Pavesi A, Adriani G, Tay A, Warkiani ME, Yeap WH, Wong SC, Kamm RD. Sci. Rep., 2016. 6:26584

2.7 Tumor Microenvironments

  1. *Apoptosis mapping in space and time of 3D tumor ecosystems reveals transmissibility of cytotoxic cancer death.Irina Veith, Arianna Mencattini, Valentin Picant, Marco Serra, Marine Leclerc, Maria Colomba Comes, Fathia Mami-Chouaib, Jacques Camonis, Stéphanie Descroix, Hamasseh Shirvani, Fatima Mechta-Grigoriou, Gérard Zalcman, Maria Carla Parrini and Eugenio Martinelli. Plos Computational Biology March 2021 https://doi.org/10.1371/journal.pcbi.1008870
  2. *Pirfenidone Reduces Epithelial–Mesenchymal Transition and Spheroid Formation in Breast Carcinoma through Targeting Cancer-Associated Fibroblasts (CAFs).Hamidreza Aboulkheyr Es, Thomas R Cox, Ehsan Sarafraz-Yazdi, Jean Paul Thiery and Majid Ebrahimi Warkiani. Cancers October 2021 https://doi.org/10.3390/cancers13205118
  3. *Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms.Haichuan Hu, Zofia Piotrowska1, Patricia J. Hare Huidong Chen, Hillary E. Mulvey, Aislinn Mayfield, Sundus Noeen, Krystina Kattermann, Max Greenberg, August Williams, Amanda K. Riley Jarad J. Wilson, Ying-Qing Mao Ruo-PanHuang, Mandeep K. Banwait, Jeffrey Ho Giovanna S. Crowther, Lida P.Hariri and Jeffrey A. Engelman. Cancer Cell November 2021 DOI: https://doi.org/10.1016/j.ccell.2021.09.003

3.1 Immune Checkpoint Modulation

  1. WEE1 inhibition induces anti-tumor immunity by activating ERV and the dsRNA pathway  Ensong Guo, Rourou Xiao, Yifan Wu, Funian Lu, Chen Liu, Bin Yang, Xi Li, Yu Fu, Zizhuo Wang, Yuan Li, Yuhan Huang, Fuxia Li, Xue Wu, Lixin You, Tianyu Qin, Yiling Lu, Xiaoyuan Huang, Ding Ma, Gordon B. Mills, Chaoyang Sun and Gang Chen. JEM January 2022 https://doi.org/10.1084/jem.20210789
  2. *Mesenchymal stem cells induce PD‐L1 expression through the secretion of CCL5 in breast cancer cells. Aboulkheyr Es H, Bigdeli B, Zhand S, Aref AR, Thiery JP and Warkiani ME. J. Cell Physiol. (Nov 2020) doi: 10.1002/jcp.30135
  3. *PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer.  Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B… Miller G. Nat Immunol (2020). https://doi.org/10.1038/s41590-020-0620-x
  4. *Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Rashidian M, LaFleur MW, Verschoor VL, Dongre A, Zhang Y, Nguyen TH … Ploegh HL. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16971-16980. doi: 10.1073/pnas.1905005116. Epub 2019 Aug 2.
  5. *RIP1 Kinase Drives Macrophage-Mediated Adaptive Immune Tolerance in Pancreatic Cancer. Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M… Miller G. Cancer Cell 34, 757–774, November 12, 2018. https://doi.org/10.1016/j.ccell.2018.10.006​​
  6. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver.  Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR…  Maini MK. Molecular Therapy (7 Nov 2018), doi: 10.1016/j.ymthe.2018.08.013.
  7. *Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG,  Jenkins RW… Hacohen N. Cell  vol 175, issue 4, P998-1013.E20, November 01, 2018. https://doi.org/10.1016/j.cell.2018.10.038
  8. *BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in Kras-Mutant Non–Small Cell Lung Cancer. Adeegbe DO,  Liu SW, Hattersley MM, Bowden M, ZhouCW, Li S… Wong KK. Cancer Immunol Res; 6(10); 1234–45. Epub 7 Aug 2018 DOI: 10.1158/2326-6066.CIR-18-0077
  9. *Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Kitajima SIvanova EGuo SYoshida RCampisi M… Barbie DA. Cancer Discov. Epub 8 Oct 2018 DOI: 10.1158/2159-8290.CD-18-0689
  10. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR,  Campisi M, Ivanova E, Portell A, Larios D, Piel BP… Jenkins RW. Lab on a Chip, 5 Sep 2018, DOI: 10.1039/C8LC00322J
  11. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Cañadas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL… Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
  12. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng JWang ESJenkins RWLi SDries RYates K, … Wong KKCancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.
  13. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RWAref ARLizotte PHIvanova EStinson SZhou CW, … Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.

3.2 Immune Cell-Mediated Killing

  1. *Intrinsic Immunogenicity of Small Cell Lung Carcinoma Revealed by Its Cellular Plasticity.Navin R. Mahadevan, Erik H. Knelson, Jacquelyn O. Wolff, Amir Vajdi, Maria Saigí, Marco Campisi, Deli Hong, Tran C. Thai, Brandon Piel, Saemi Han, Bruce B. Reinhold, Jonathan S. Duke-Cohan, Michael J. Poitras, Luke J. Taus, Patrick H. Lizotte, Andrew Portell, Victor Quadros, Alison D. Santucci, Takahiko Murayama, Israel Cañadas, Shunsuke Kitajima, Aoi Akitsu, Maya Fridrikh, Hideo Watanabe, Brendan Reardon, Prafulla C. Gokhale, Cloud P. Paweletz, Mark M. Awad, Eliezer M. Van Allen, Ana Lako, Xi-Tao Wang, Benjamin Chen, Fangxin Hong, Lynette M. Sholl, Michael Y. Tolstorukov, Kathleen Pfaff, Pasi A. Jänne, Evisa Gjini, Robin Edwards, Scott Rodig, Ellis L. Reinherz, Matthew G. Oser and David A. Barbie. Cancer Discovery March 2021 DOI: 10.1158/2159-8290.CD-20-0913
  2. *IL-15 mediated expansion of rare durable memory T cells following adoptive cellular therapy.Karan Kohli, Theodore Scott Nowicki, Shihong Zhang1, Ralph Graeme Black, Brett A Schroeder, Erik A Farrar, Jianhong Cao, Heather Sloan, Dawn Stief, Lee D Cranmer, Michael J Wagner, Douglas S Hawkins, Venu G Pillarisetty, Antoni Ribas, Jean Campbell, Robert H Pierce, Edward Y Kim, Robin L Jones, Stanley R Riddell, Cassian Yee and Seth M Pollack. Journal for Immunotherapy of Cancer March 2021 DOI: 10.1136/jitc-2020-002232
  3. *Human MAIT cells endowed with HBV specificity are cytotoxic and migrate towards HBV-HCC while retaining antimicrobial functions.Katie Healy, Andrea Pavesi, Tiphaine Parrot, Michał J. Sobkowiak, Susanne E. Reinsbach, Haleh Davanian, Anthony T. Tan, Soo Aleman, Johan K. Sandberg, Haleh Davanian, Antonio Bertoletti, and Margaret Sällberg Chen. JHEP Reports June 2021 https://doi.org/10.1016/j.jhepr.2021.100318
  4. *Boosting Natural Killer Cell Therapies in Glioblastoma Multiforme Using Supramolecular Cationic Inhibitors of Heat Shock Protein 90. Tanmoy Saha, Amanda A van Vliet, Chunxiao Cui, Jorge Jimenez Macias, Arpita Kulkarni, Luu Nhat Pham, Sean Lawler, Jan Spanholtz, Anna-Maria Georgoudaki, Adil Doganay Duru and Aaron Goldman. Frontiers in Molecular Biosciences December 2021 DOI: 10.3389/fmolb.2021.754443
  5. *IL-15 mediated expansion of rare durable memory T cells following adoptive cellular therapy. Kohli K, Yao L, Nowicki TS, Zhang S, Black RG, Schroeder BA … Pollack SM , J Immunother Cancer. 2021 May;9(5):e002232. doi: 10.1136/jitc-2020-002232
  6. *Intrinsic immunogenicity of small cell lung carcinoma revealed by its cellular plasticity. Mahadevan NR, Knelson EH, Wolff JO, Vajdi A, Saigi M, Campisi M… Barbie DA. Cancer Discovery March 2021   10.1158/2159-8290.CD-20-0913
  7. *CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Preece R, Pavesi A, Gkazi SA, Stegmann KA, Georgiadis C, Tan ZM… Qasim W. Molecular Therapy – Methods & Clinical Development Volume 19, 11 December 2020, Pages 149-161.  https://doi.org/10.1016/j.omtm.2020.09.002
  8. *Immunosuppressive Drug Resistant Armored TCR T cells for immune‐therapy of HCC in liver transplant patients. Hafezi M,  Lin M,  Chia A,  Chua A,  Ho ZZ,  Fam R … Bertoletti A. Hepatology (Nov 2020) doi:10.1002/hep.31662
  9. *Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Kitajima SIvanova EGuo SYoshida RCampisi M… Barbie DA. Cancer Discov. Epub 8 Oct 2018 DOI: 10.1158/2159-8290.CD-18-0689
  10. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver.  Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR…  Maini MK. Molecular Therapy (7 Nov 2018), doi: 10.1016/j.ymthe.2018.08.013.
  11. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (6 Mar 2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
  12. *A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
4.1 Neurobiology

  1. *Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Xiao Y, Kim D, Dura B, Zhang K, Han E, Ip J, Chen AT, Zhou J and Fan R. Adv. Sci. 2019, 6, 1801531. DOI: 10.1002/advs.201801531
  2. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 12 July 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014
  3. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as blood-brain barrier. Adriani G, Ma DL, Pavesi A, Kamm R, Goh ELK. Lab Chip, 2016. 17 (3):448-459
  4. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Han S, Yang K, Shin Y, Lee JS, Kamm RD, Chung S, Cho SW. Lab Chip, 2012. 12 (13):2305-2308
  5. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapalli CR, Ozdinler PH, Pasquina L, Chung S, Varner J, . . . Macklis JD. Integr. Biol., 2012. 4 (11):1398-1405
  6. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD. Lab Chip, 2011. 11 (3):497-507

5.1. Stem Cells

  1. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SGM, Amadi OC, Pearl TM, Lee RT, So PTC, Kamm RD. Small, 2016. 12 (5):612-622
  2. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Wan CR, Chung S, Kamm RD. Ann. Biomed. Eng., 2011. 39 (6):1840-1847
  3. Controlled electromechanical cell stimulation on-a-chip. Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Sci. Rep., 2015. 5:11800

6.1. Mechanobiology

  1. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, . . . Soncini M. Biotechnol. Bioeng., 2016. 113 (4):859-869
  2. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Uzel SGM, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, . . . Kamm RD. Science Advances, 2016. 2 (8)

7.1. Environmental Assessment

  1. *Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. I. M. Oliveira, M. R. Carvalho, D. C. Fernandes, C. M. Abreu, F. R. Maia, H. Pereira, D. Caballero, S. C. Kundu, R. L. Reisab and J. M. Oliveira. Journal of Materials Chemistry B May 2021 https://doi.org/10.1039/D1TB00802A 
  2. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. 31 Jan 2018 Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
  3. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 12 Dec 2017, 7, 56108–56116

8.1 Organoid Applications

  1. *Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system.Vaishaa Natarajan, Camille R. Simoneau, Ann L. Erickson, Nathan L. Meyers, Jody L. Baron, Stewart Cooper, Todd C. McDevitt and Melanie Ott. Open Biology January 2022 https://doi.org/10.1098/rsob.210320
8.1 Reviews

  1. *Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Shun Zhang , Zhengpeng Wan and Roger D. Kamm. Lab Chip January 2021 DOI: 10.1039/D0LC01186J
  2. *Engineering approaches for studying immune-tumor cell interactions and immunotherapy. Sarah E. Shelton, Huu Tuan Nguyen, David A. Barbie and Roger D.Kamm. iScience January 2021 https://doi.org/10.1016/j.isci.2020.101985
  3. Advances in microfluidic in vitro systems for neurological disease modeling. Paul M. Holloway, Sandrine Willaime-Morawek, Richard Siow, Melissa Barber, Róisín M. Owens, Anup D. Sharma, Wendy Rowan, Eric Hill and Michele Zagnoni. Journal of Neuroscience Research February 2021 https://doi.org/10.1002/jnr.24794
  4. *Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment.Terry Ching, Yi-Chin Toh, Michinao Hashimoto and Yu Shrike Zhang. Trends in Pharmacological Sciences June 2021 https://doi.org/10.1016/j.tips.2021.05.007
  5. *Engineering Breast Cancer On-chip—Moving Toward Subtype Specific Models.Carmen Moccia and Kristina Haase. Frontiers in Bioengineering and Biotechnology June 2021 doi: 10.3389/fbioe.2021.694218
  6. *Microphysiological systems to study tumor-stroma interactions in brain cancer. Edward R. Neves, Brendan A. C. Harley and Sara Pedron. Brain Research Bulletin June 2021 https://doi.org/10.1016/j.brainresbull.2021.06.012
  7. *In vitro 3D liver tumor microenvironment models for immune cell therapy optimization. Maxine Lam, Jose Antonio Reales-Calderon, Jin Rong Ow, Giulia Adriani and Andrea Pavesi. APL Bioengineering October 2021 https://doi.org/10.1063/5.0057773
  8. M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Adriani G, Bai J, Wong SC, Kamm RD, Thiery JP. Macrophage, 2016. 3:e1222
  9. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Adriani G, Pavesi A, Tan AT, Bertoletti A, Thiery JP, Kamm RD. Drug Discov. Today, 2016. 21 (9):1472-1478
  10. Microfluidics: A New Tool for Modeling Cancer-Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Trends in Cancer. 2 (1):6-19
  11. Impact of the physical microenvironment on tumor progression and metastasis. Spill F, Reynolds DS, Kamm RD, Zaman MH. Curr. Opin. Biotechnol., 2016. 40:41-48
  12. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Mak M, Spill F, Kamm RD, Zaman MH. J. Biomech. Eng., 2016. 138 (2):021004-021004-8
  13. Microfabrication and microfluidics for muscle tissue models. Uzel SGM, Pavesi A, Kamm RD. Progress in Biophysics and Molecular Biology, 2014. 115 (2–3):279-293
  14. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD. Drug Discov. Today, 2014. 19 (6):735-742
  15. Creating living machines. Kamm RD, Bashir R. Ann. Biomed. Eng., 2014. 42 (2):445-459
  16. Microfluidic platforms for mechanobiology. Polacheck WJ, Li R, Uzel SGM, Kamm RD. Lab Chip, 2013. 13 (12):2252-2267
  17. Tumor cell migration in complex microenvironments. Polacheck WJ, Zervantonakis IK, Kamm RD. Cell. Mol. Life Sci., 2013. 70 (8):1335-1356
  18. Microfluidic models of vascular functions. Wong KHK, Chan JM, Kamm RD, Tien J. 2012. 14:205-230
  19. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD. Biomicrofluidics, 2011. 5 (1)