Publications

Publications

  1. Home
  2. /
  3. Learn
  4. /
  5. Publications

Many of the publications listed below were conducted on lab-made devices that form the basis of AIM Biotech chips. Papers that employed the commercial chips are marked with ‘​*‘.

Latest Publications

  1. *Intrinsic immunogenicity of small cell lung carcinoma revealed by its cellular plasticity. Mahadevan NR, Knelson EH, Wolff JO, Vajdi A, Saigi M, Campisi M… Barbie DA. Cancer Discovery March 2021   10.1158/2159-8290.CD-20-0913
  2. *Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer. Cho WC, Kim MJ, Park JW, Jeong SY, and Ku JL. Translational Oncology Volume 14, Issue 2, February 2021, 101000. https://doi.org/10.1016/j.tranon.2020.101000
  3. *CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Preece R, Pavesi A, Gkazi SA, Stegmann KA, Georgiadis C, Tan ZM… Qasim W. Molecular Therapy – Methods & Clinical Development Volume 19, 11 December 2020, Pages 149-161.  https://doi.org/10.1016/j.omtm.2020.09.002
  4. *Immunosuppressive Drug Resistant Armored TCR T cells for immune‐therapy of HCC in liver transplant patients. Hafezi M,  Lin M,  Chia A,  Chua A,  Ho ZZ,  Fam R … Bertoletti A. Hepatology (Nov 2020) doi:10.1002/hep.31662
  5. *Mesenchymal stem cells induce PD‐L1 expression through the secretion of CCL5 in breast cancer cells. Aboulkheyr Es H, Bigdeli B, Zhand S, Aref AR, Thiery JP and Warkiani ME. J. Cell Physiol. (Nov 2020) doi: 10.1002/jcp.30135.
  6. *Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model.  Azadi S, Shadpour MT and Warkiani ME.  Biotechnol Bioeng (October 2020) https://doi.org/10.1002/bit.27612
  7. *Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse modelsPark JH, Kim MJ, Kim WJ, Kwon KD, Ha KT, Choi BT, Lee SY and Shin HK. Cancer Letters (Mar 2020) DOI:10.1016/j.canlet.2020.03.009
  8. *PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer.  Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B… Miller G. Nat Immunol (2020). https://doi.org/10.1038/s41590-020-0620-x
  9. *Use of ex vivo patient derived tumor organotypic spheroids to identify combination therapies for HER2mutant non small cell lung cancer. Ivanova EKuraguchi MXu MPortell ATaus LJDiala I…  Janne PA (2020) Clin Cancer Res. 2020 Feb 7. pii: clincanres.1844.2019. doi: 10.1158/1078-0432.CCR-19-1844.
  10. *Microvessel network formation and interactions with pancreatic islets in 3D chip cultures​. Rambøl MH, Han E, and Niklason LE. Tissue Engineering Part A (Jan 2020) https://doi.org/10.1089/ten.tea.2019.0186
  11. *Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma TherapyGu MJ, Toh TB, Hooi L, Lim JJ, Zhang XY, and Chow EKH. ACS Appl. Mater. Interfaces 2019, 11, 49, 45427-45441
  12. *Crumbs proteins regulate layered retinal vascular development required for visionSon S,  Cho M and Lee J.  Biochemical and Biophysical Research Communications, Volume 521, Issue 422 January 2020, Pages 939-946.
  13. *Quantitative screening of the effects of hyper-osmotic stress on cancer cells cultured in 2- or 3-dimensional settings. Miermont A, Lee SWL, Adriani G, Kamm RD  Scientific Reports volume 9, Article number: 13782 (2019)
  14. *Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Rashidian M, LaFleur MW, Verschoor VL, Dongre A, Zhang Y, Nguyen TH … Ploegh HL. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16971-16980. doi: 10.1073/pnas.1905005116. Epub 2019 Aug 2.
  15. *Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Xiao Y, Kim D, Dura B, Zhang K, Han E, Ip J, Chen AT, Zhou J and Fan R. Adv. Sci. 2019, 6, 1801531. DOI: 10.1002/advs.201801531
  16. *Senescent Cells with Augmented Cytokine Production for Microvascular Bioengineering and Tissue Repairs. Xiao Y, Liu C, & Chen Z, Blatchley MR, Kim DJ,  Zhou J, Xu M, Gerecht S and Fan, R. (2019).  Advanced Biosystems. 1900089. doi: 10.1002/adbi.201900089.
  17. *Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Mercurio A, Sharples L, Corbo F, Franchini C, Vacca A, Catalano A, Carocci A, Kamm RD, Pavesi A and Adriani G (2019)  Front. Pharmacol. 10:349. doi: 10.3389/fphar.2019.00349
  18. *RIP1 Kinase Drives Macrophage-Mediated Adaptive Immune Tolerance in Pancreatic Cancer. Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M… Miller G. Cancer Cell 34, 757–774, November 12, 2018. https://doi.org/10.1016/j.ccell.2018.10.006
  19. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver.  Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR…  Maini MK. Molecular Therapy (7 Nov 2018), doi: 10.1016/j.ymthe.2018.08.013.
  20. *Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG,  Jenkins RW… Hacohen N. Cell  vol 175, issue 4, P998-1013.E20, November 01, 2018. https://doi.org/10.1016/j.cell.2018.10.038
  21. *Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Kitajima SIvanova EGuo SYoshida RCampisi MBarbie DA. Cancer Discov. Epub 8 Oct 2018 DOI: 10.1158/2159-8290.CD-18-0689
  22. *BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in Kras-Mutant Non–Small Cell Lung Cancer. Adeegbe DO,  Liu SW, Hattersley MM, Bowden M, ZhouCW, Li S… Wong KK. Cancer Immunol Res; 6(10); 1234–45. Epub 7 Aug 2018 DOI: 10.1158/2326-6066.CIR-18-0077
  23. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H… Guccione E. Life Science Alliance, 7 Sept 2018 doi:10.26508/lsa.201800157
  24. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR,  Campisi M, Ivanova E, Portell A, Larios D, Piel BP… Jenkins RW. Lab on a Chip, 5 Sep 2018, DOI: 10.1039/C8LC00322J
  25. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Cañadas IThummalapalli RKim JWKitajima SJenkins RWChristensen CL… Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
  26. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 12 July 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014
  27. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C … Wong KK. Clinical Cancer Research 26 June 2018 doi: 10.1158/1078-0432.CCR-17-3438
  28. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (6 Mar 2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
  29. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. 31 Jan 2018, Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7
  30. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 12 Dec 2017, 7, 56108–56116
  31. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RWAref ARLizotte PHIvanova EStinson SZhou CW, … Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
  32. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng JWang ESJenkins RWLi SDries RYates K, … Wong KKCancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.​​
  33. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection.  Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2017 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.
  34. *A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.

Key Publications

  1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm RD.  Lab Chip, 2008, 8, 1468-1477.
  2. Cell migration into scaffold under co-culture conditions in a microfluidic platform. Chung S, Sudo S, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Lab Chip, 2009, 9(2):269-75.
  3. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD and Chung S.  Nature Prot, 7(7):1247-1259, 2012, PMID: 22678430
  4. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Vickerman V, Kamm RD.  Integr Biol (Camb). 2012 Jun 7. PMID 22722695
  5. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD.   Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13515-20. Epub 2012 Aug 6. PMID: 22869695
  6. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, Sim W-J, Zervantonakis IK, Thiery JP, Kamm RD.  Integr Biol (Camb). 2013 Feb;5(2):381-9. doi: 10.1039/c2ib20209c PMID: 23172153
  7. Mechanotransduction of fluid stresses governs 3D rheotaxis. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD.  Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2447-52. doi: 10.1073/pnas.1316848111. Epub 2014 Feb 3. PMID: 24550267
  8. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD.  Proceedings of the National Academy of Sciences, pp. 201417115, 2014
  9. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RWAref ARLizotte PHIvanova EStinson SZhou CW, … Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
  10. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014

1. Vascular Functions

1.1. Angiogenesis

  1. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Vickerman V, Blundo J, Chung S, Kamm R. Lab Chip, 2008. 8 (9):1468-1477
  2. Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform. Chung S, Sudo R, Zervantonakis IK, Rimchala T, Kamm RD. Advanced Materials, 2009. 21 (47):4863-4867
  3. Transport-mediated angiogenesis in 3D epithelial coculture. Sudo R, Chung S, Zervantonakis IK, Vickerman V, Toshimitsu Y, Griffith LG, Kamm RD. FASEB J., 2009. 23 (7):2155-2164
  4. Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies. Das A, Lauffenburger D, Asada H, Kamm R. Cellular and Molecular Bioengineering, 2010. 3 (4):345-360
  5. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S. Analytical Chemistry, 2011. 83 (22):8454-8459
  6. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Shin Y, Jeon JS, Han S, Jung GS, Shin S, Lee SH, . . . Chung S. Lab Chip, 2011. 11 (13):2175-2181
  7. Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures. Farahat WA, Wood LB, Zervantonakis IK, Schor A, Ong S, Neal D, . . . Asada HH. PLoS ONE, 2012. 7 (5):e37333
  8. Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting. Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD. PLoS ONE, 2012. 7 (12):e50582
  9. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, . . . Chung S. Nature Protocols, 2012. 7 (7):1247-1259
  10. In vitro angiogenesis assay for the study of cell-encapsulation therapy. Kim C, Chung S, Yuchun L, Kim M-C, Chan JKY, Asada HH, Kamm RD. Lab Chip, 2012. 12 (16):2942-2950
  11. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M. Integr. Biol., 2013. 5 (12):1474-1484​
  12. *Crumbs proteins regulate layered retinal vascular development required for visionSon S,  Cho M and Lee J.  Biochemical and Biophysical Research Communications, Volume 521, Issue 422 January 2020, Pages 939-946.
  13. *Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse modelsPark JH, Kim MJ, Kim WJ, Kwon KD, Ha KT, Choi BT, Lee SY and Shin HK. Cancer Letters (Mar 2020) DOI:10.1016/j.canlet.2020.03.009

1.2. Anti-Angiogenesis

  1. The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device. Yamamoto K, Tanimura K, Mabuchi Y, Matsuzaki Y, Chung S, Kamm RD, . . . Sudo R. J. Biomech. Sci. Eng., 2013. 8 (2):114-128
  2. Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sharghi-Namini S, Tan E, Ong L-LS, Ge R, Asada HH. Sci. Rep., 2014. 4:4031
  3. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. Lab Chip, 2015. 15 (1):301-310
  4. *Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Mercurio A, Sharples L, Corbo F, Franchini C, Vacca A, Catalano A, Carocci A, Kamm RD, Pavesi A and Adriani G (2019)  Front. Pharmacol. 10:349. doi: 10.3389/fphar.2019.00349​​

1.3. Vasculogenesis

  1. Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System. Whisler JA, Chen MB, Kamm RD. Tissue Engineering Part C: Methods, 2014. 20 (7):543-552
  2. In Vitro Microvessel Growth and Remodeling within a Three-Dimensional Microfluidic Environment. Park Y, Tu T-Y, Lim S, Clement IM, Yang S, Kamm R. Cellular and Molecular Bioengineering, 2014. 7 (1):15-25
  3. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, . . . Kamm RD. Integr. Biol., 2014. 6 (5):555-563
  4. Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Belair DG, Whisler JA, Valdez J, Velazquez J, Molenda JA, Vickerman V, . . . Murphy WL. Stem Cell Reviews and Reports, 2015. 11 (3):511-525
  5. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Cancer Res., 2016. 76 (9):2513-2524
  6. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fröse J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.
  7. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 2017, 7, 56108–56116
  8. *Senescent Cells with Augmented Cytokine Production for Microvascular Bioengineering and Tissue Repairs. Xiao Y, Liu C, & Chen Z, Blatchley MR, Kim DJ,  Zhou J, Xu M, Gerecht S and Fan, R. (2019).  Advanced Biosystems. 1900089. doi: 10.1002/adbi.201900089.
  9. *Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Xiao Y, Kim D, Dura B, Zhang K, Han E, Ip J, Chen AT, Zhou J and Fan R. Adv. Sci. 2019, 6, 1801531. DOI: 10.1002/advs.201801531
  10. *Microvessel network formation and interactions with pancreatic islets in 3D chip cultures​. Rambøl MH, Han E, and Niklason LE. Tissue Engineering Part A (Jan 2020) https://doi.org/10.1089/ten.tea.2019.0186

1.4. Flow Response

1.5. Transendothelial Migration

  1. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Han S, Yan JJ, Shin Y, Jeon JJ, Won J, Jeong HE, . . . Chung S. Lab Chip, 2012. 12 (20):3861-3865

1.6. Migration

  1. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context. Hang T-C, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, . . . Lauffenburger DA. Molecular & Cellular Proteomics : MCP, 2013. 12 (12):3704-3718
  2. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network. Kim M-C, Whisler J, Silberberg YR, Kamm RD, Asada HH. PLoS Comput Biol, 2015. 11 (10):e1004535​

1.7. Permeability

  1. Constructive remodeling of a synthetic endothelial extracellular matrix. Han S, Shin Y, Jeong HE, Jeon JS, Kamm RD, Huh D, . . . Chung S. Sci. Rep., 2015. 5:18290

2. Cancer Biology

2.1. Spheroid Dispersion

  1. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Aref AR, Huang RY-J, Yu W, Chua K-N, Sun W, Tu T-Y, . . . Kamm RD. Integr. Biol., 2013. 5 (2):381-389
  2. Validating Antimetastatic Effects of Natural Products in an Engineered Microfluidic Platform Mimicking Tumor Microenvironment. Niu Y, Bai J, Kamm RD, Wang Y, Wang C. Mol. Pharm., 2014. 11 (7):2022-2029
  3. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, . . . Barbie DA. Cancer Discov., 2014. 4 (4):452-465
  4. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, . . . Gillanders WE. The Journal of Clinical Investigation, 2014. 124 (12):5411-5423
  5. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, Rusan M, . . . Gray NS. Proc. Natl. Acad. Sci. USA, 2014. 111 (45):E4869-E4877
  6. Identification of drugs as single agents or in combination to prevent carcinoma dissemination in a microfluidic 3D environment. Bai J, Tu T-Y, Kim C, Thiery JP, Kamm RD. Oncotarget, 2015. 6 (34):36603-36614
  7. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Bai J, Adriani G, Dang T-M, Tu T-Y, Penny H-XL, Wong S-C, . . . Thiery J-P. Oncotarget, 2015. 6 (28):25295-25307
  8. *Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection.  Wang X, Gu MJ, Toh TB, Abdullah NLB, Chow E. SLAS Technol. 2017 Feb;23(1):44-56. doi: 10.1177/2472630317735497. Epub 2017 Oct 11.​​

2.2. Extravasation

  1. In Vitro Model of Tumor Cell Extravasation. Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. PLoS ONE, 2013. 8 (2):e56910
  2. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Chen MB, Whisler JA, Jeon JS, Kamm RD. Integr. Biol., 2013. 5 (10):1262-1271
  3. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, . . . Kamm RD. Biomaterials, 2014. 35 (8):2454-2461
  4. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD. Proc. Natl. Acad. Sci. USA, 2015. 112 (1):214-219
  5. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, . . . Weinberg RA. Cancer Discov., 2016. 6 (6):630-649
  6. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, . . . Wong SC. OncoImmunology, 2016. 5 (8):e1191731
  7. On-chip human microvasculature assay for visualization and quantitation of tumor cell extravasation dynamics. Chen MB, Whisler JA, Fröse J, Yu C, Shin YJ and Kamm RD. Nat Protoc. 2017 May; 12(5): 865–880.​
  8. *Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model.  Azadi S, Shadpour MT and Warkiani ME.  Biotechnol Bioeng (October 2020) https://doi.org/10.1002/bit.27612

2.3. Intravasation

  1. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Proc. Natl. Acad. Sci. USA, 2012. 109 (34):13515-13520

2.4. Flow Response

  1. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Polacheck WJ, Charest JL, Kamm RD. Proc. Natl. Acad. Sci. USA, 2011. 108 (27):11115-20
  2. Mechanotransduction of fluid stresses governs 3D cell migration. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. Proc. Natl. Acad. Sci. USA, 2014. 111 (7):2447-2452

2.5. Invasion and Migration

  1. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD. Lab Chip, 2009. 9 (2):269-275
  2. Concentration gradients in microfluidic 3D matrix cell culture systems. Zervantonakis I, Chung S, Sudo R, Zhang M, Charest J, Kamm R. International Journal of Micro-Nano Scale Transport, 2010. 1 (1):27-36
  3. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Funamoto K, Zervantonakis IK, Liu Y, Ochs CJ, Kim C, Kamm RD. Lab Chip, 2012. 12 (22):4855-4863
  4. Hydrogels: Extracellular Matrix Heterogeneity Regulates Three-Dimensional Morphologies of Breast Adenocarcinoma Cell Invasion. Shin Y, Kim H, Han S, Won J, Jeong HE, Lee E-S, . . . Chung S. Advanced Healthcare Materials, 2013. 2 (6):920-920
  5. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, . . . Sudo R. Microfluid. Nanofluid., 2013. 14 (6):969-981
  6. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Truong D, Puleo J, Llave A, Mouneimne G, Kamm RD, Nikkhah M. Sci. Rep., 2016. 6:34094
  7. Macrophage-secreted TNFα and TGFβ1 Influence Migration Speed and Persistence of Cancer Cells in 3D Tissue Culture via Independent Pathways. Li R, Hebert JD, Lee TA, Xing H, Boussommier-Calleja A, Hynes RO, . . . Kamm RD. Cancer Res., 2016. 77 (2):279-290
  8. *MBNL1 alternative splicing isoforms play opposing roles in cancer. Tabaglio T, Low DHP, Teo WKL, Goy PA, Cywoniuk P, Wollmann H… Guccione E. Life Science Alliance, 7 Sept 2018 doi:10.26508/lsa.201800157​​
  9. *Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Xiao Y, Kim D, Dura B, Zhang K, Han E, Ip J, Chen AT, Zhou J and Fan R. Adv. Sci. 2019, 6, 1801531. DOI: 10.1002/advs.201801531
  10. *Nanodiamond-Mediated Delivery of a G9a Inhibitor for Hepatocellular Carcinoma TherapyGu MJ, Toh TB, Hooi L, Lim JJ, Zhang XY, and Chow EKH. ACS Appl. Mater. Interfaces 2019, 11, 49, 45427-45441
  11. *Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer. Cho WC, Kim MJ, Park JW, Jeong SY, and Ku JL. Translational Oncology Volume 14, Issue 2, February 2021, 101000. https://doi.org/10.1016/j.tranon.2020.101000

2.6. Testing New Therapeutic Approaches

  1. Engineering a 3D microfluidic culture platform for tumor-treating field application. Pavesi A, Adriani G, Tay A, Warkiani ME, Yeap WH, Wong SC, Kamm RD. Sci. Rep., 2016. 6:26584
  2. *Assessing Therapeutic Efficacy of MEK Inhibition in a KRASG12C-Driven Mouse Model of Lung Cancer. Li S, Liu S, Deng J, Akbay EA, Hai J, Ambrogio C … Wong KK. Clinical Cancer Research 26 June 2018 doi: 10.1158/1078-0432.CCR-17-3438
  3. *Phthalimide Derivative Shows Anti-angiogenic Activity in a 3D Microfluidic Model and No Teratogenicity in Zebrafish Embryos. Mercurio A, Sharples L, Corbo F, Franchini C, Vacca A, Catalano A, Carocci A, Kamm RD, Pavesi A and Adriani G (2019)  Front. Pharmacol. 10:349. doi: 10.3389/fphar.2019.00349​​
  4. *Quantitative screening of the effects of hyper-osmotic stress on cancer cells cultured in 2- or 3-dimensional settings. Miermont A, Lee SWL, Adriani G, Kamm RD  Scientific Reports volume 9, Article number: 13782 (2019)
  5. *Use of ex vivo patient derived tumor organotypic spheroids to identify combination therapies for HER2mutant non small cell lung cancer. Ivanova EKuraguchi MXu MPortell ATaus LJDiala I…  Janne PA (2020) Clin Cancer Res. 2020 Feb 7. pii: clincanres.1844.2019. doi: 10.1158/1078-0432.CCR-19-1844.
  6. *Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse modelsPark JH, Kim MJ, Kim WJ, Kwon KD, Ha KT, Choi BT, Lee SY and Shin HK. Cancer Letters (Mar 2020) DOI:10.1016/j.canlet.2020.03.009

3. Immuno-Oncology

3.1. Immune Checkpoint

    1. *Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Jenkins RWAref ARLizotte PHIvanova EStinson SZhou CW, … Barbie DA. Cancer Discov. 2017 Nov 3. pii: CD-17-0833. doi: 10.1158/2159-8290.CD-17-0833.
    2. *CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Deng JWang ESJenkins RWLi SDries RYates K, … Wong KKCancer Discov. 2017 Nov 3. pii: CD-17-0915. doi: 10.1158/2159-8290.CD-17-0915.
    3. *Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Cañadas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW, Christensen CL… Barbie DA. Nature Medicine 23 July 2018 doi.org/10.1038/s41591-018-0116-5
    4. *3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Aref AR,  Campisi M, Ivanova E, Portell A, Larios D, Piel BP… Jenkins RW. Lab on a Chip, 5 Sep 2018, DOI: 10.1039/C8LC00322J
    5. *Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Kitajima SIvanova EGuo SYoshida RCampisi M… Barbie DA. Cancer Discov. Epub 8 Oct 2018 DOI: 10.1158/2159-8290.CD-18-0689
    6. *BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in Kras-Mutant Non–Small Cell Lung Cancer. Adeegbe DO,  Liu SW, Hattersley MM, Bowden M, ZhouCW, Li S… Wong KK. Cancer Immunol Res; 6(10); 1234–45. Epub 7 Aug 2018 DOI: 10.1158/2326-6066.CIR-18-0077
    7. *Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG,  Jenkins RW… Hacohen N. Cell  vol 175, issue 4, P998-1013.E20, November 01, 2018. https://doi.org/10.1016/j.cell.2018.10.038
    8. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver.  Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR…  Maini MK. Molecular Therapy (7 Nov 2018), doi: 10.1016/j.ymthe.2018.08.013.
    9. *RIP1 Kinase Drives Macrophage-Mediated Adaptive Immune Tolerance in Pancreatic Cancer. Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M… Miller G. Cancer Cell 34, 757–774, November 12, 2018. https://doi.org/10.1016/j.ccell.2018.10.006​​
    10. *Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Rashidian M, LaFleur MW, Verschoor VL, Dongre A, Zhang Y, Nguyen TH … Ploegh HL. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16971-16980. doi: 10.1073/pnas.1905005116. Epub 2019 Aug 2.
    11. *PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer.  Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B… Miller G. Nat Immunol (2020). https://doi.org/10.1038/s41590-020-0620-x
    12. *Mesenchymal stem cells induce PD‐L1 expression through the secretion of CCL5 in breast cancer cells. Aboulkheyr Es H, Bigdeli B, Zhand S, Aref AR, Thiery JP and Warkiani ME. J. Cell Physiol. (Nov 2020) doi: 10.1002/jcp.30135.

3.2. T Cell Therapy

    1. *A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A. JCI Insight. 2017 Jun 15;2(12). pii: 89762. doi: 10.1172/jci.insight.89762.
    2. Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model Lee SWL, Adriani G, Ceccarello E, Pavesi A, Tan AT, Bertoletti A, Kamm RD and Wong SC (6 Mar 2018) Front. Immunol. 9:416. doi: 10.3389/ mmu.2018.00416
    3. *Molecular recalibration of PD-1+ antigen-specific T cells from blood and liver.  Otano I, Escors D, Schurich A, Singh H, Robertson F, Davidson BR…  Maini MK. Molecular Therapy (7 Nov 2018), doi: 10.1016/j.ymthe.2018.08.013.
    4. *Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Kitajima SIvanova EGuo SYoshida RCampisi M… Barbie DA. Cancer Discov. Epub 8 Oct 2018 DOI: 10.1158/2159-8290.CD-18-0689
    5. *Immunosuppressive Drug Resistant Armored TCR T cells for immune‐therapy of HCC in liver transplant patients. Hafezi M,  Lin M,  Chia A,  Chua A,  Ho ZZ,  Fam R … Bertoletti A. Hepatology (Nov 2020) doi:10.1002/hep.31662
    6. *CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Preece R, Pavesi A, Gkazi SA, Stegmann KA, Georgiadis C, Tan ZM… Qasim W. Molecular Therapy – Methods & Clinical Development Volume 19, 11 December 2020, Pages 149-161.  https://doi.org/10.1016/j.omtm.2020.09.002
    7. *Intrinsic immunogenicity of small cell lung carcinoma revealed by its cellular plasticity. Mahadevan NR, Knelson EH, Wolff JO, Vajdi A, Saigi M, Campisi M… Barbie DA. Cancer Discovery March 2021   10.1158/2159-8290.CD-20-0913
    8. *IL-15 mediated expansion of rare durable memory T cells following adoptive cellular therapy. Kohli K, Yao L, Nowicki TS, Zhang S, Black RG, Schroeder BA … Pollack SM , J Immunother Cancer. 2021 May;9(5):e002232. doi: 10.1136/jitc-2020-002232.

 

4. Neurobiology

  1. A high-throughput microfluidic assay to study neurite response to growth factor gradients. Kothapalli CR, van Veen E, de Valence S, Chung S, Zervantonakis IK, Gertler FB, Kamm RD. Lab Chip, 2011. 11 (3):497-507
  2. A microfluidic device to investigate axon targeting by limited numbers of purified cortical projection neuron subtypes. Tharin S, Kothapalli CR, Ozdinler PH, Pasquina L, Chung S, Varner J, . . . Macklis JD. Integr. Biol., 2012. 4 (11):1398-1405
  3. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Han S, Yang K, Shin Y, Lee JS, Kamm RD, Chung S, Cho SW. Lab Chip, 2012. 12 (13):2305-2308
  4. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as blood-brain barrier. Adriani G, Ma DL, Pavesi A, Kamm R, Goh ELK. Lab Chip, 2016. 17 (3):448-459
  5. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Campisi M, Shin YJ, Osaki T, Hajal C, Chiono V, Kamm RD. Biomaterials 12 July 2018 https://doi.org/10.1016/j.biomaterials.2018.07.014
  6. *Ex vivo Dynamics of Human Glioblastoma Cells in a Microvasculature-on-a-Chip System Correlates with Tumor Heterogeneity and Subtypes. Xiao Y, Kim D, Dura B, Zhang K, Han E, Ip J, Chen AT, Zhou J and Fan R. Adv. Sci. 2019, 6, 1801531. DOI: 10.1002/advs.201801531

5. Stem Cell Biology

5.1. Differentiation of Embryonic Stem Cells

  1. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Wan CR, Chung S, Kamm RD. Ann. Biomed. Eng., 2011. 39 (6):1840-1847
  2. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform. Uzel SGM, Amadi OC, Pearl TM, Lee RT, So PTC, Kamm RD. Small, 2016. 12 (5):612-622

5.2. Electrical and Mechanical Stimulation of Mesenchymal Stem Cells

  1. Controlled electromechanical cell stimulation on-a-chip. Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Sci. Rep., 2015. 5:11800

6. ​Mechanobiology

6.1. Mechanical stimulation of Cardiac Fibroblasts

  1. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, . . . Soncini M. Biotechnol. Bioeng., 2016. 113 (4):859-869

6.2. Optically Excitable Motor Units

  1. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Uzel SGM, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, . . . Kamm RD. Science Advances, 2016. 2 (8)

​7. Other Models

7.1. Environmental Assessment

  1. *Functional human 3D microvascular networks on a chip to study the procoagulant effects of ambient fine particulate matter. Li Y, Pi QM, Wang PC, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Yang X, Yang W. RSC Adv., 12 Dec 2017, 7, 56108–56116 
  2. *Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture. Li Y, Wang PC, Hu CL, Wang K, Chang Q, Liu LJ, Han ZG, Shao Y, Zhai Y, Zuo ZY, Gong ZY, Wu Y. 31 Jan 2018 Scientific Reports volume 8, Article number: 1939(2018) doi:10.1038/s41598-018-20445-7

8. Reviews

  1. Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. Ann. Biomed. Eng., 2010. 38 (3):1164-1177
  2. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD. Biomicrofluidics, 2011. 5 (1)
  3. Microfluidic models of vascular functions. Wong KHK, Chan JM, Kamm RD, Tien J. 2012. 14:205-230
  4. Tumor cell migration in complex microenvironments. Polacheck WJ, Zervantonakis IK, Kamm RD. Cell. Mol. Life Sci., 2013. 70 (8):1335-1356
  5. Microfluidic platforms for mechanobiology. Polacheck WJ, Li R, Uzel SGM, Kamm RD. Lab Chip, 2013. 13 (12):2252-2267
  6. Creating living machines. Kamm RD, Bashir R. Ann. Biomed. Eng., 2014. 42 (2):445-459
  7. In vitro models of the metastatic cascade: from local invasion to extravasation. Bersini S, Jeon JS, Moretti M, Kamm RD. Drug Discov. Today, 2014. 19 (6):735-742
  8. Microfabrication and microfluidics for muscle tissue models. Uzel SGM, Pavesi A, Kamm RD. Progress in Biophysics and Molecular Biology, 2014. 115 (2–3):279-293
  9. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. Mak M, Spill F, Kamm RD, Zaman MH. J. Biomech. Eng., 2016. 138 (2):021004-021004-8
  10. Impact of the physical microenvironment on tumor progression and metastasis. Spill F, Reynolds DS, Kamm RD, Zaman MH. Curr. Opin. Biotechnol., 2016. 40:41-48
  11. Microfluidics: A New Tool for Modeling Cancer-Immune Interactions. Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD. Trends in Cancer. 2 (1):6-19
  12. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Adriani G, Pavesi A, Tan AT, Bertoletti A, Thiery JP, Kamm RD. Drug Discov. Today, 2016. 21 (9):1472-1478
  13. M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Adriani G, Bai J, Wong SC, Kamm RD, Thiery JP. Macrophage, 2016. 3:e1222